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The ohmic  potent ia l  d rop  between the work ing  and  reference electrodes plays an impor t an t  role in 
the early stage o f  the voltage-step t ransient  process. The non-l inear  effect o f  the ohmic drop  on the 
t ransient  currents  is calculated for large voltage steps, assuming reversible behaviour  (negligible 
surface overpotent ial)  of  the redox couple O + ne = R. 

Nomenclature 
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ac 

B 

Ck 
D~ 
4. '/2 

f 
I 

/0 
i 

J~ 

area of working electrode (m 2) 
Cottrell coefficient (Asl/2m 2), 
Equation 10a 
parameter of Cottrell asymptote, 
Equation 10c 
concentration field ofkth  component (tool m ~) 
diffusion coefficient of kth component (m 2 s-~ ) 
semiintegral, d,.l/2F(x) = rc I/2 j'(~- 

x (x - s)-I/2F(s) ds 
parameter of Cottrell asymptote, Equation 10b 
current (A) 
initial current (=  -U/Rw) (A) 
current density (=-I/A) (Am 2) 
diffusion flux density of kth component 
(molto 2s 1) 

r w 
P 
Rw 

t 

to 
U 

qc 
N 

radius of a disc electrode (m) 
normalized overpotential (~-FU/RT) 
ohmic resistance adjoined to working electrode 

time from the start (s) 
initial lag time (= (ARw~/U)  2) (s) 
constant voltage step from equilibrium (V) 
concentration overpotential (V) 
electroconductivity of bulk solution (f~ ~ m ~ ) 

Subscripts 
k kth component 
O cathodic depolarizer 
R anodic depolarizer 

Superscripts 
w surface of working electrode 
b bulk of solution 

1. Introduction 

The transient response induced by a voltage step can 
yield important physicochemical data about elec- 
trolytic processes [1]. In particular, the coefficients of 
diffusion for a reversible redox couple can be deter- 
mined using this method. 

The phrase "potentiostatic transient" expresses an 
idealized concept rather than an experimental pro- 
cedure, as the ohmic drop between the working and 
reference electrodes cannot be completely compen- 
sated in the early stage of a transient process, when 
rapid changes of relatively high currents occur. 
Therefore, the more correct approach to treating the 
transient data is based on the voltage-step transient 
model which includes ohmic losses [1, 2]. Due to non- 
linearity of the electrochemical relations, such as the 
Nernst equation or Volmer-Butler kinetics, the tran- 
sient process model including ohmic losses is inevitably 
non-linear. Only the linearized approximate solution 
to the problem is known [1, 2] and is limited to very 

low overpotentials. It is the purpose of the present 
paper to analyse the effect of ohmic losses over the full 
span of overpotentials including the region of limiting 
diffusion currents which is of particular importance in 
electrodiffusion diagnostics of flow [3]. 

2. Theory 

2. I. Statement of  the problem 

We consider here the one-dimensional unsteady simul- 
taneous diffusion of the two components, k = O, R, 
of a reversible redox couple, O + ne = R, between a 
polarizable working electrode (located in the plane 
z = 0) and a semi-infinite immobile medium. Starting 
with the equilibrium state, ck = c b and I = 0, at time 
t < 0, the transient process is induced by a voltage 
step, U, between the working electrode and a non- 
polarized electrode of the same type, located at a fixed 
point outside the diffusion layer. During the transient 
process, U is kept constant. 

* This paper was presented at the Workshop on Electrodiffusion Flow Diagnostics, CHISA, Prague, August 1990. 
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Under these assumptions, U is the sum of the ohmic 
drop, - IRw,  and the concentration overpotential, r/~, 
between the two electrodes of  the same type, 

g = '7~ - ~rRw (1) 

(Co/Co)(Ca/Ca) = exp ~ ~/~ (2) 

2.2. Mathematical  model 

Transient diffusion of the kth component in a 
semi-infinite immobile medium is governed by the 
Cottrellian boundary-value problem: 

O, ck = D~O~=ck 

c~ , c b (=cons t )  for t , O+ or z 

(3) 

0:3 

(4a) 

(4b) 

(5) 

(9) 

= nFcbD~2f  

(10a) 

(10b) 

ca = c~(t) f o r t  > 0 a n d z  = 0 

D(t )  : - -Ok~:ckl  z : 0 

The general solution to the single-component problem 
provides the following integral relations between the 
wall concentration c~(t) and the diffusion flux density 
j~.(t): 

(Da_) I/2 (c~(t) - c b) = d, '12jk, (6a) 

Jk = d, 112 (Dk) i/2 (c;(t) -- cb). (6b) 

In real multicomponent problems, these boundary- 
valued quantities for various components are inter- 
related by additional boundary conditions, specified 
at the surface of the working electrode. 

We limit ourselves to reversible redox systems, 
0 + ne = R, for which the surface concentrations 
are interrelated by stoichiometric constraints -do  = 
JR = IInFA. That is, 

(Do) 1/2 [c b - c~(t)] = --(DR) in [c b -- c~(t)] 

= d< -'i2 ( I /nFA)  (7) 

and by the local equilibrium condition (Nernst 
equation), 

I 1 c;(t)/c~(t) = (cb/c b) exp - - ~  (U + IRw) (8) 

For  the strictly potentiostatic transient process, 
Rw = 0, the problem was solved by Cottrell [1]: 

i = ac(7~t) -112 

nF(exp  (P) - l) 
a C -= exp (n)/(cb D~ 2) + 1/(cb D~ ~-) 

exp (P) - 1 
i -  exp (P) + B 

~b Flli2 l(ob FII/2~, (10c) B -= co,-,o /\CR~tJR ) 

When the ohmic drop is taken into consideration, 
the problem becomes non-linear due to the exponen- 
tial term in Equation 8. Introducing the normalized 
concentration driving force W, normalized flux N, and 

the appropriate time variable T, 

1 1 
W - ~ ( l  - c~/c~) = ~-~(1 - c~/c b) ( l l a )  

N =- I/Io ( l lb )  

T = t/to ( l lc)  

into the Equations 7 and 8, we obtain the system of 
two equations 

W ( T )  

N ( T )  = 1 -  

= cl~12N(T) (12a) 

1 B f W ( T ) )  (lZb) In ( 11 + 
- - T?5 / 

which should be solved simultaneously for the two 
adjustable parameters P, B. For P ~ 1, the problem 
becomes asymptotically linear, N ~ 1 - W, with the 
well-known explicit solution [1,2]: 

N ( T )  ~ exp (T) erfc (TII2). (13) 

The asymptote for T ~ 1 can be found, starting with 
the obvious asymptotes N ~ 1, W ~ 2 (Tlzc) ~12, and 
expanding N into a power series: 

N ( T )  ~ 1 - a~T ~/2 - a 2 T -  . . .  (14) 

2 (1 + B) f (15a) 

1 - B  

Using the obvious zero-order asymptotic estimates of 
W for both T , ~  1 (W ~ 2 (T/rt) m) and T >> 1 
(W ~ 1), the following asymptotic structure can be 
found for N at T >> 1: 

N ( T )  ~ ( z T )  112 (1  + b t T 1 _~_ b2 T 2 ~_ . . . ) .  

(16) 

The actual values orb1, b2 cannot be found through an 
asymptotic analysis as they depend on the entire 
course of N = N ( T ) .  

2.3. Numerical solution 

A standard finite-difference method was used to com- 
pute the semi-integral in Equation 12a, see the dis- 
crete scheme R2 in [4, p. 147]. The constant step 
dT  = 0.01 was sufficient to achieve an accuracy of  
five decimal digits in N ( T ) .  The values of N ( T )  
for several first mesh points were estimated using 
Equation 14. With a guess N j = N/ (T ) ,  an improved 
course N j+l = Ns+I(T) was computed using the 

relaxation scheme 

W = dr l l2N j (17a) 

1 (1  + BfW~ (lVb) NJ+'I2= 1 - - ~ l n  l - - - f /  

N ~+' = (N ~+'p- + vN0/(1 + V) (17c) 

The optimum values of the relaxation coeff• /~, 
were found to be close to 0.2 at low and medium P. 
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Fig. I. Theore t ica l  courses  for N agains t  T for the pa r t i cu la r  case 
B = 1. Thick solid lines - numer ica l  results; thin solid l ines - 
a sympto te s  accord ing  to E q u a t i o n s  14 and 16; dashed  line - 
Cot t reI l ian asympto te .  N = (~zT) b'2. 

Five iterations were sufficient for stabilizing six deci- 
mal digits in N. For  P ~ 5, the iteration process 
converged rather slowly and required higher values of  
the relaxation coefficient. 

The detailed computations were undertaken for the 
most common case B = 1. It should be noted that the 
courses N = N(T) for - P  and P are identical for this 
particular case. The resulting courses of  N = N(T) 
are shown in Fig. 1. The most important for applica- 
tions is the asymptotic representation (Equation 16) 
for T >> I which expresses slight deviations from the 
Cottrell asymptote, Equation 9. The values b~, b2 were 
found by fitting the asymptotic expansion (16) on the 
numerical data for T ~> t. The resulting values for 
P > 2 were satisfactorily correlated in the following 
way: 

b, = ( f 3 _  1)/2, (18a) 

b2 = -4 .3b~/P  (18b) 

3. Comparison with experimental results 

3.1. Experimental conditions 

The voltage-step transient experiments were carried 
out with the aqueous solution containing 55% of 
saccharose, 25molto-3 K3Fe(CN)6, 25molm -3 
K4Fe(CN)6 - H~O, and 57mol m -~ K2SO4. The stan- 
dard rotating disc electrode, made from platinum 
wire, rw = I mm, was used as the working electrode. 
The effective area of  the working electrode during an 
early stage of the transient process was estimated to be 
higher by 5% than the macroscopic area, A = 1.05~r~. 
The geometrical arrangement of electrolytic cell and 
other technical details are described in [5]. It should 
be ~aoted that only the early stage of  the transient 
process is considered here. Its course does not depend 
on the rotation speed, including the extremum case 

of  the immobile working disc electrode. (For example, 
see [51). 

All the electrodiffusion experiments were conducted 
at constant temperature 298.4K. The coefficient of 
diffusion for the cathodic depolarizer, Do = 52.6 x 
10-72m2s -~, was determined using the rotating disc 
electrode under steady state limiting-current con- 
ditions [5]. The electroconductivity, • = 0. ] 6f1 -~ m 
was determined using the standard conductometric 
technique. 

3.2. Estimate of ohmic resistance 

The simplest estimate of the ohmic resistance for a 
disc working electrode in the cell with a large-area 
counter electrode folIows from the theory of  primary 
current distribution [6, p. 344]: 

Rw = 1/(4 crw)= 1.55k . (19) 

According to this concept, the ohmic potential loss is 
concentrated in a small semispherical volume around 
the working electrode. It was checked experimentally 
that the transient currents were independent of  the 
location of the reference electrode, including the two- 
electrode circuit as a particular case. 

3.3. Results 

Only the critical period of the transient process, with 
ohmic and diffusion resistances of  the same order of 
magnitude is shown in the Fig. 2. The short-time data 
(30#s < t < l ms) correspond to the constant- 
current regime, I = I0, and will be discussed later. 
The long-time data (0.2s < t < 10s) have been 
previously published and analysed in [5]. In par- 
ticular, the period 0.3 s < t < 1 s corresponds to the 

150  i l 
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Fig. 2. Experimental transient data ]'or 55% sucrose solution; the 
applied voltages (0.25, 0.50, 0.'70 V) correspond to P = ]0, 20, 30, 
respectively. Thick solid lines - theoretical courses (B = I); 
dashed  line - c o m m o n  Cot t re l l i an  a s y m p t o t e  for P ,> 5; dash-  
and-do t t ed  lines - ini t ial  currents .  
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well-developed Cottrellian limiting-diffusion region 
with ac = nFc~Do = 18.1 As~/2m 2 The correspond- 
ing value of Do is in close agreement with the afore- 
mentioned steady state result. 

During a short initial period, t <~ to, the current is 
controlled by the ohmic losses and deviates only 
slightly from the initial value, I0. The experimental 
evidence of the prevailing ohmic control in the initial 
period is the proportionality between the initial cur- 
rent, I0, and the applied voltage, U. The three runs, 
U = 0.75, 0.5, and 0.25V, with the corresponding 
initial currents, I0 = 432, 290, and 148/,A, provide 
the effective resistance Rw = 1.7kf~, which is very 
close to the theoretical estimate given in Equation 19. 

3.4. Discussion 

The most delicate question in comparing a theoretical 
prediction of current densities with experimental data 
is the determination of the effective area, A, of the 
electrode surface. As argued in [5], this parameter can 
be higher than the macroscopic area because of the 
surface roughness. This effect can be analysed quan- 
titatively by introducing the enhancement factor 
E =- A/rcr~ and considering its dependence on the 
actual current density [5]. 

The data presented in Fig. 2, were obtained assum- 
ing the constant enhancement factor, E = 1.05, in 
the region t < 0.2s. Within the range of the pure 
Cottrellian regime, 0.2 < t < 0.5, this estimate is 
in fairly good agreement with the experimentally 
obtained roughness characteristics of the electrode 
used (referred to as the BLUE electrode in [5]). At 
shorter times, the assumption E = 1.05 does not 
agree with the roughness characteristics, given in [5], 
but it fits the actual data on the transient currents very 

well. 
The theoretical courses of the transient currents for 

high voltages, [ P I > 2, approach the Cottrell asymp- 
tote, N ~ (~T) ~/z, from above, instead of fi'om 
below. This "overshooting" effect is relatively strong 
- the maximum overshoot, apparent in Fig. 1, is 

approximately 50%. Neglecting this effect in [5] 
resulted in overestimating the enhancement factors in 
the region of pronounced overshoot, t < 0.2s. For 
the same reason, there is a discrepancy between the 
data in Fig. 2 here and Fig. 2.2 of [7], which both are 
based on the same primary experimental material. 

4. Conclusions 

The comparison of the linear asymptote (Equation 13) 
with the numerically determined courses of N = N ( T )  

indicates that the linear asymptote is valid, with the 
deviations in N less than 1%, up to the values 
IPI < 0.5, i.e. I Ut < 12inV. This limit is slightly 
higher than the value 2 + 5 mV suggested in [2]. For  
q PI = 1, the deviations in N are roughly 3% (see 
Fig. 1). 

The essential purpose of the presented theory was to 
map the effect of the ohmic drop under conditions 
close enough to the limiting diffusion current regime. 
With the requi rementf  > 0.999, this region is limited 
by the condition I PI > 8. In this region, the tran- 
sient currents approach the Cottrellian asymptote 
(Equation 9) from above. This surprising phenomenon 
throws some doubts on the oversimplified approach 
[5, 7] of estimating the overall transport resistance by 
summing the Cottrellian and ohmic resistances. 
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